Neural Networks in Finance

"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Building Neural Networks

A step-by-step introduction to modeling, training, and forecasting using wavelet networks Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification presents the statistical model identification framework that is needed to successfully apply wavelet networks as well as extensive comparisons of alternate methods. Providing a concise and rigorous treatment for constructing optimal wavelet networks, the book links mathematical aspects of wavelet network construction to statistical modeling and forecasting applications in areas such as finance, chaos, and classification. The authors ensure that readers obtain a complete understanding of model identification by providing in-depth coverage of both model selection and variable significance testing. Featuring an accessible approach with introductory coverage of the basic principles of wavelet analysis, Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification also includes:

- Methods that can be easily implemented or adapted by researchers, academics, and professionals in identification and modeling for complex nonlinear systems and artificial intelligence
- Multiple examples and thoroughly explained procedures with numerous applications ranging from financial modeling and financial engineering, time series prediction and construction of confidence and prediction intervals, and classification and chaotic time series prediction
- An extensive introduction to neural networks that begins with regression models and builds to more complex frameworks
- Coverage of both the variable selection algorithm and the model selection algorithm for wavelet networks in addition to methods for constructing confidence and prediction intervals

Ideal as a textbook for MBA and graduate-level courses in applied neural network modeling, artificial intelligence, advanced data analysis, time series, and forecasting in financial engineering, the book is also useful as a supplement for courses in informatics, identification and modeling for complex nonlinear systems, and computational finance. In addition, the book serves as a valuable reference for researchers and practitioners in the fields of mathematical modeling, engineering, artificial intelligence, decision science, neural networks, and finance and economics.

An Investigation and Implementation of Financial Neural Networks

Focusing on approaches to performing trend analysis through the use of neural nets, this book compares the results of experiments on various types of markets, and includes a review of current work in the area. It appeals to students in both neural computing and finance as well as to financial analysts and academic and professional
Quantum Finance

With existent uses ranging from motion detection to music synthesis to financial forecasting, recurrent neural networks have generated widespread attention. The tremendous interest in these networks drives Recurrent Neural Networks: Design and Applications, a summary of the design, applications, current research, and challenges of this subfield of artificial neural networks. This overview incorporates every aspect of recurrent neural networks. It outlines the wide variety of complex learning techniques and associated research projects. Each chapter addresses architectures, from fully connected to partially connected, including recurrent multilayer feedforward. It presents problems involving trajectories, control systems, and robotics, as well as RNN use in chaotic systems. The authors also share their expert knowledge of ideas for alternate designs and advances in theoretical aspects. The dynamical behavior of recurrent neural networks is useful for solving problems in science, engineering, and business. This approach will yield huge advances in the coming years. Recurrent Neural Networks illuminates the opportunities and provides you with a broad view of the current events in this rich field.

Wavelet Neural Networks

This book constitutes revised selected papers from the 4th Workshop on Mining Data for Financial Applications, MIDAS 2019, held in conjunction with ECML PKDD 2019, in Würzburg, Germany, in September 2019. The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 16 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain.
Read Free Neural Networks And The Financial Markets Predicting Combining And Portfolio Optimisation Perspectives In Neural Computing

Succinctly explains how neural networks function, what they can accomplish as well as how to use, construct and apply them for maximum profit. Selecting what is to be predicted and choosing proper inputs, deciding on the best network architecture, training, and algorithms are among the topics discussed. Highlights examples of successful networks. Numerous graphs and spreadsheets are used to illustrate concepts. The appendix features lists of neural network suppliers, useful publications and more.

Python for Finance Cookbook

The field of economics and finance is one of the few areas where the need for neural network applications is increasing. This book investigates the use of neural networks in developing real-world applications to help economists and financial strategists predict the movement of the markets.

Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications

This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website

Financial Applications of Artificial Neural Networks

Big Data and Machine Learning in Quantitative Investment
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.

Neural Network Solutions for Trading in Financial Markets

As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.

Mining Data for Financial Applications

With the exponential growth of program trading in the global financial industry, quantum finance and its underlying technologies have become one of the hottest topics in the fintech community. Numerous financial institutions and fund houses around the world require computer professionals with a basic understanding of quantum finance to develop intelligent financial systems. This book presents a selection of the author’s past 15 years’ R&D work and practical implementation of the Quantum Finance Forecast System – which integrates quantum field theory and related AI technologies to design and develop intelligent global financial forecast and quantum trading systems. The book consists of two parts: Part I discusses the basic concepts and theories of quantum finance and related AI technologies, including quantum field theory, quantum price fields, quantum price level modelling and quantum entanglement to predict major financial events. Part II then examines the current, ongoing R&D projects on the application of quantum finance technologies in intelligent real-time financial prediction and quantum trading systems. This book is both a textbook for undergraduate & masters level quantum finance, AI and fintech courses and a valuable resource for researchers and data scientists working in the field of quantum finance and intelligent
financial systems. It is also of interest to professional traders/quants & independent investors who would like to grasp the basic concepts and theory of quantum finance, and more importantly how to adopt this fascinating technology to implement intelligent financial forecast and quantum trading systems. For system implementation, the interactive quantum finance programming labs listed on the Quantum Finance Forecast Centre official site (QFFC.org) enable readers to learn how to use quantum finance technologies presented in the book.

Neural Networks for Economic and Financial Modelling

2017 IEEE 19th Conference on Business Informatics (CBI)

This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Artificial Neural Networks in Finance and Manufacturing

Explains the mathematics, theory, and methods of Big Data as applied to finance and investing. Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book:

- Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples
- Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)
- Covers vital topics in the field in a clear, straightforward manner
- Compares, contrasts, and discusses Big Data and Small Data
- Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides

Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.

Neural Networks in Finance and Investing

This practical introduction describes the kinds of real-world problems neural network technology can solve. Surveying a range of neural network applications, the book demonstrates the construction and operation of artificial neural systems. Through numerous examples, the author explains the process of building neural-network applications that utilize recent connectionist developments, and conveys an understanding both of the potential, and the limitations of different network models. Examples are described in enough detail for you to assimilate the information and then use the accumulated experience of others to create your own applications. These examples are
deliberately restricted to those that can be easily understood, and recreated, by any reader, even the novice practitioner. In some cases the author describes alternative approaches to the same application, to allow you to compare and contrast their advantages and disadvantages. Organized by application areas, rather than by specific network architectures or learning algorithms, Building Neural Networks shows why certain networks are more suitable than others for solving specific kinds of problems. Skapura also reviews principles of neural information processing and furnishes an operations summary of the most popular neural-network processing models. Finally, the book provides information on the practical aspects of application design, and contains six topic-oriented chapters on specific applications of neural-network systems. These applications include networks that perform: Pattern matching, storage, and recall Business and financial systems Data extraction from images Mechanical process control systems New neural networks that combine pattern matching with fuzzy logic The book includes application-oriented exercises that further help you see how a neural network solves a problem, and that reinforce your understanding of modeling techniques.

Artificial Neural Networks - ICANN 2006

A step-by-step introduction to modeling, training, and forecasting using wavelet networks Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification presents the statistical model identification framework that is needed to successfully apply wavelet networks as well as extensive comparisons of alternative methods. Providing a concise and rigorous treatment for constructing optimal wavelet networks, the book links mathematical aspects of wavelet network construction to statistical modeling and forecasting applications in areas such as finance, chaos, and classification. The authors ensure that readers obtain a complete understanding of model identification by providing in-depth coverage of both model selection and variable significance testing. Featuring an accessible approach with introductory coverage of the basic principles of wavelet analysis, Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification also includes: • Methods that can be easily implemented or adapted by researchers, academics, and professionals in identification and modeling for complex nonlinear systems and artificial intelligence • Multiple examples and thoroughly explained procedures with numerous applications ranging from financial modeling and financial engineering, time series prediction and construction of confidence and prediction intervals, and classification and chaotic time series prediction • An extensive introduction to neural networks that begins with regression models and builds to more complex
Trading on the Edge

As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic approach which emulates certain aspects of human brain functions, and is used extensively in financial forecasting allowing for quick investment decision making. This book presents the most cutting-edge artificial intelligence (AI)/neural networking applications for markets, assets and other areas of finance. Split into four sections, the book first explores time series analysis for forecasting and trading across a range of assets, including derivatives, exchange traded funds, debt and equity instruments. This section will focus on pattern recognition, market timing models, forecasting and trading of financial time series. Section II provides insights into macro and microeconomics and how AI techniques could be used to better understand and predict economic variables. Section III focuses on corporate finance and credit analysis providing an insight into corporate structures and credit, and establishing a relationship between financial statement analysis and the influence of various financial scenarios. Section IV focuses on portfolio management, exploring applications for portfolio theory, asset allocation and optimization. This book also provides some of the latest research in the field of artificial intelligence and finance, and provides in-depth analysis and highly applicable tools and techniques for practitioners and researchers in this field.

From Statistics to Neural Networks

Offers an alternative technique in forecasting to the traditional techniques used in trading and dealing. The book
explains the shortcomings of traditional techniques and shows how neural networks overcome many of the disadvantages of these traditional systems.

Neural Networks

Forecasting is one of the most important activities that form the basis for strategic, tactical, and operational decisions in all business organizations. Recently, neural networks have emerged as an important tool for business forecasting. There are considerable interests and applications in forecasting using neural networks. Neural Networks in Business Forecasting provides for researchers and practitioners some recent advances in applying neural networks to business forecasting. A number of case studies demonstrating the innovative or successful applications of neural networks to many areas of business as well as methods to improve neural network forecasting performance are presented.

Recurrent Neural Networks

Comprehensively specified benchmarks are provided (including weight values), drawn from time series examples in chaos theory and financial futures. The book covers data preprocessing, random walk theory, trading systems and risk analysis. It also provides a literature review, a tutorial on backpropagation, and a chapter on further reading and software.

Empirical Asset Pricing

Experts from the world’s major financial institutions contributed to this work and have already used the newest technologies. Gives proven strategies for using neural networks, algorithms, fuzzy logic and nonlinear data analysis techniques to enhance profitability. The latest analytical breakthroughs, the impact on modern finance theory and practice, including the best ways for profitably applying them to any trading and portfolio management system, are all covered.
Neural Networks in Business Forecasting

This book constitutes the refereed proceedings of the First International Conference on Technology Systems and Management, ICTSM-2011, held in Mumbai, India, in February 2011. The 47 revised full papers presented were carefully reviewed and selected from 276 submissions. The papers are organized in topical sections on computer engineering and information technology; electronics and telecommunication; as well as technology management.

Financial Prediction Using Neural Networks

This completely updated version of the classic first edition offers a wealth of new material reflecting the latest developments in the field. For investment professionals seeking to maximize this exciting new technology, this handbook is the definitive information source.

Fractal Approaches for Modeling Financial Assets and Predicting Crises

This research examines and analyzes the use of neural networks as a forecasting tool. Specifically, a neural network's ability to predict future trends of Stock Market Indices is tested. Accuracy is compared against a traditional forecasting method, multiple linear regression analysis. Finally, the probability of the model’s forecast being correct is calculated using conditional probabilities. While only briefly discussing neural network theory, this research determines the feasibility and practicality of using neural networks as a forecasting tool for the individual investor. This study builds upon the work done by Edward Gately in his book Neural Networks for Financial Forecasting. This research validates the work of Gately and describes the development of a neural network that achieved a 93.3 percent probability of predicting a market rise, and an 88.07 percent probability of predicting a market drop in the S&P500. It was concluded that neural networks do have the capability to forecast financial markets and, if properly trained, the individual investor could benefit from the use of this forecasting tool.

Technology Systems and Management
Many believe that neural networks will eventually out-perform even the best traders and investors, yet this extraordinary technology remained largely inaccessible to practitioners—prior to this landmark text. Nowhere else will you find such a thorough and relevant examination of the applications and potential of this cutting-edge technology. This book not only contains many examples of neural networks for prediction and risk assessment, but provides promising systems for forecasting and explaining price movements of stocks and securities. Sections include neural network overview; analysis of financial condition; business failure prediction; debt risk assessment; security market applications; and neural network approaches to financial forecasting.

Artificial Intelligence in Finance

In an ever-changing economy, market specialists strive to find new ways to evaluate the risks and potential reward of economic ventures. They start by assessing the importance of human reaction during the economic planning process and put together systems to measure financial markets and their longevity. Fractal Approaches for Modeling Financial Assets and Predicting Crises is a critical scholarly resource that examines the fractal structure and long-term memory of the financial markets in order to predict prices of financial assets and financial crises. Featuring coverage on a broad range of topics, such as computational process models, chaos theory, and game theory, this book is geared towards academicians, researchers, and students seeking current research on pricing and predicting financial crises.

Wavelet Neural Networks

Business Informatics is the scientific discipline targeting information processes and related phenomena in their socio economical business context, including companies, organisations, administrations and society in general. As a field of study, it endeavours to take a systematic and analytic approach in adopting a multi disciplinary orientation that draws theories and practices from the fields of management science, organisational science, computer science, systems engineering, information systems, information management, social science, and economics information science. The IEEE CBI 2017 is aimed at creating a forum for researchers and practitioners from the fields that contribute to the construction, use and maintenance of information systems and the organisational context in which they are embedded.
Visual Explorations in Finance

Edited by Guido Deboeck, a leading exponent in the use of computation intelligence methods in finance and economic forecasting, and the originator of SOM, Teuvo Kohonen. An 8-page color section makes this book unique, colorful and exciting to read. Each chapter contains exercises and solutions, perfectly suited to aid self-study.

Artificial Intelligence in Financial Markets

"This book is the first book to provide opportunities for millions working in economics, accounting, finance and other business areas education on HONNs, the ease of their usage, and directions on how to obtain more accurate application results. It provides significant, informative advancements in the subject and introduces the HONN group models and adaptive HONNs"--Provided by publisher.

Neural Network Time Series

This volume looks at financial prediction from a broad range of perspectives. It covers: - the economic arguments - the practicalities of the markets - how predictions are used - how predictions are made - how predictions are turned into something usable (asset locations) It combines a discussion of standard theory with state-of-the-art material on a wide range of information processing techniques as applied to cutting-edge financial problems. All the techniques are demonstrated with real examples using actual market data, and show that it is possible to extract information from very noisy, sparse data sets. Aimed primarily at researchers in financial prediction, time series analysis and information processing, this book will also be of interest to quantitative fund managers and other professionals involved in financial prediction.

Neural Networks and the Financial Markets

The NATO Advanced Study Institute From Statistics to Neural Networks, Theory and Pattern Recognition Applications took place in Les Arcs, Bourg Saint Maurice, France, from June 21 through July 2, 1993. The meeting
brought together over 100 participants (including 19 invited lecturers) from 20 countries. The invited lecturers whose contributions appear in this volume are: L. Almeida (INESC, Portugal), G. Carpenter (Boston, USA), V. Cherkassky (Minnesota, USA), F. Fogelman Soulie (LRI, France), W. Freeman (Berkeley, USA), J. Friedman (Stanford, USA), F. Girosi (MIT, USA and IRST, Italy), S. Grossberg (Boston, USA), T. Hastie (AT&T, USA), J. Kittler (Surrey, UK), R. Lippmann (MIT Lincoln Lab, USA), J. Moody (OGI, USA), G. Palm (U1m, Germany), B. Ripley (Oxford, UK), R. Tibshirani (Toronto, Canada), H. Wechsler (GMU, USA), C. Wellekens (Eurecom, France) and H. White (San Diego, USA). The ASI consisted of lectures overviewing major aspects of statistical and neural network learning, their links to biological learning and non-linear dynamics (chaos), and real-life examples of pattern recognition applications. As a result of lively interactions between the participants, the following topics emerged as major themes of the meeting: (1) Unified framework for the study of Predictive Learning in Statistics and Artificial Neural Networks (ANNs); (2) Differences and similarities between statistical and ANN methods for non parametric estimation from examples (learning); (3) Fundamental connections between artificial learning systems and biological learning systems.

Neural Networks for Financial Forecasting

Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts and edited to present a coherent and comprehensive, yet not redundant, practically oriented introduction.

Big Data Science in Finance

Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to
the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Forecasting Financial Markets Using Neural Networks

“Bali, Engle, and Murray have produced a highly accessible introduction to the techniques and evidence of modern empirical asset pricing. This book should be read and absorbed by every serious student of the field, academic and professional.” Eugene Fama, Robert R. McCormick Distinguished Service Professor of Finance, University of Chicago and 2013 Nobel Laureate in Economic Sciences “The empirical analysis of the cross-section of stock returns is a monumental achievement of half a century of finance research. Both the established facts and the methods used to discover them have subtle complexities that can mislead casual observers and novice researchers. Bali, Engle, and Murray’s clear and careful guide to these issues provides a firm foundation for future discoveries.” John Campbell, Morton L. and Carole S. Olshan Professor of Economics, Harvard University “Bali, Engle, and Murray provide clear and accessible descriptions of many of the most important empirical techniques and results in asset pricing.” Kenneth R. French, Roth Family Distinguished Professor of Finance, Tuck School of Business, Dartmouth College “This exciting new book presents a thorough review of what we know about the cross-section of stock returns. Given its comprehensive nature, systematic approach, and easy-to-understand language, the book is a valuable resource for any introductory PhD class in empirical asset pricing.” Lubos Pastor, Charles P. McQuaid Professor of Finance, University of Chicago Empirical Asset Pricing: The Cross Section of Stock Returns is a comprehensive overview of
the most important findings of empirical asset pricing research. The book begins with thorough expositions of the most prevalent econometric techniques with in-depth discussions of the implementation and interpretation of results illustrated through detailed examples. The second half of the book applies these techniques to demonstrate the most salient patterns observed in stock returns. The phenomena documented form the basis for a range of investment strategies as well as the foundations of contemporary empirical asset pricing research. Empirical Asset Pricing: The Cross Section of Stock Returns also includes: Discussions on the driving forces behind the patterns observed in the stock market An extensive set of results that serve as a reference for practitioners and academics alike Numerous references to both contemporary and foundational research articles Empirical Asset Pricing: The Cross Section of Stock Returns is an ideal textbook for graduate-level courses in asset pricing and portfolio management. The book is also an indispensable reference for researchers and practitioners in finance and economics. Turan G. Bali, PhD, is the Robert Parker Chair Professor of Finance in the McDonough School of Business at Georgetown University. The recipient of the 2014 Jack Treynor prize, he is the coauthor of Mathematical Methods for Finance: Tools for Asset and Risk Management, also published by Wiley. Robert F. Engle, PhD, is the Michael Armellino Professor of Finance in the Stern School of Business at New York University. He is the 2003 Nobel Laureate in Economic Sciences, Director of the New York University Stern Volatility Institute, and co-founding President of the Society for Financial Econometrics. Scott Murray, PhD, is an Assistant Professor in the Department of Finance in the J. Mack Robinson College of Business at Georgia State University. He is the recipient of the 2014 Jack Treynor prize.

Machine Learning for Finance

The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on
financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about

Neural Networks in Finance and Investing

Plan and build useful machine learning systems for financial services, with full working Python code Key Features Build machine learning systems that will be useful across the financial services industry Discover how machine learning can solve finance industry challenges Gain the machine learning insights and skills fintech companies value

Book Description Machine learning skills are essential for anybody working in financial data analysis. Machine Learning for Finance shows you how to build machine learning models for use in financial services organizations. It shows you how to work with all the key machine learning models, from simple regression to advanced neural networks. You will see how to use machine learning to automate manual tasks, identify and address systemic bias, and find new insights and patterns hidden in available data. Machine Learning for Finance encourages and equips you to find new ways to use data to serve an organization's business goals. Broad in scope yet deeply practical in approach, Machine Learning for Finance will help you to apply machine learning in all parts of a financial organization's infrastructure. If you work or plan to work in fintech, and want to gain one of the most valuable skills in the sector today, this book is for you. What you will learn Practical machine learning for the finance sector Build machine learning systems that support the goals of financial organizations Think creatively about problems and how machine learning can solve them Identify and reduce sources of bias from machine learning models Apply machine learning to structured data, natural language, photographs, and written text related to finance Use machine learning to detect fraud, forecast financial trends, analyze customer sentiments, and more Implement heuristic baselines, time series, generative models, and reinforcement learning in Python, scikit-learn, Keras, and TensorFlow

Who this book is for Machine Learning for Finance is for financial professionals who want to develop and apply machine learning skills, and for students entering the field. You should be comfortable with Python and the basic data science stack, such as NumPy, pandas, and Matplotlib, to get the most out of this book.
Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment. Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning.

- Gain a solid reason to use machine learning
- Frame your question using financial markets laws
- Know your data
- Understand how machine learning is becoming ever more sophisticated

Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.

Artificial Higher Order Neural Networks for Economics and Business

Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas.

Key Features
- Use powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial data
- Explore unique recipes for financial data analysis and processing with Python
- Estimate popular financial models such as CAPM and GARCH using a problem-solution approach

Book Description
Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach. What you will learn

Download and preprocess financial data
from different sources Backtest the performance of automatic trading strategies in a real-world setting Estimate financial econometrics models in Python and interpret their results Use Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessment Improve the performance of financial models with the latest Python libraries Apply machine learning and deep learning techniques to solve different financial problems Understand the different approaches used to model financial time series data

Who this book is for
This book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.